TitleImpact of acute temperature and air pollution exposures on adult lung function: A panel study of asthmatics.
Publication TypeJournal Article
Year of Publication2022
AuthorsEvoy R, Kincl LD, Rohlman D, Bramer LM, Dixon H, Hystad P, Bae H, Barton ML, Phillips A, Miller RL, Waters KM, Herbstman J, Anderson KA
JournalPLoS One
Date Published2022
Adult, Air Pollution, Asthma, Bronchodilator Agents, Environmental Exposure, Humans, Lung, Temperature

BACKGROUND: Individuals with respiratory conditions, such as asthma, are particularly susceptible to adverse health effects associated with higher levels of ambient air pollution and temperature. This study evaluates whether hourly levels of fine particulate matter (PM2.5) and dry bulb globe temperature (DBGT) are associated with the lung function of adult participants with asthma.

METHODS AND FINDINGS: Global positioning system (GPS) location, respiratory function (measured as forced expiratory volume at 1 second (FEV1)), and self-reports of asthma medication usage and symptoms were collected as part of the Exposure, Location, and Lung Function (ELF) study. Hourly ambient PM2.5 and DBGT exposures were estimated by integrating air quality and temperature public records with time-activity patterns using GPS coordinates for each participant (n = 35). The relationships between acute PM2.5, DBGT, rescue bronchodilator use, and lung function collected in one week periods and over two seasons (summer/winter) were analyzed by multivariate regression, using different exposure time frames. In separate models, increasing levels in PM2.5, but not DBGT, were associated with rescue bronchodilator use. Conversely DBGT, but not PM2.5, had a significant association with FEV1. When DBGT and PM2.5 exposures were placed in the same model, the strongest association between cumulative PM2.5 exposures and the use of rescue bronchodilator was identified at the 0-24 hours (OR = 1.030; 95% CI = 1.012-1.049; p-value = 0.001) and 0-48 hours (OR = 1.030; 95% CI = 1.013-1.057; p-value = 0.001) prior to lung function measure. Conversely, DBGT exposure at 0 hours (β = 3.257; SE = 0.879; p-value>0.001) and 0-6 hours (β = 2.885; SE = 0.903; p-value = 0.001) hours before a reading were associated with FEV1. No significant interactions between DBGT and PM2.5 were observed for rescue bronchodilator use or FEV1.

CONCLUSIONS: Short-term increases in PM2.5 were associated with increased rescue bronchodilator use, while DBGT was associated with higher lung function (i.e. FEV1). Further studies are needed to continue to elucidate the mechanisms of acute exposure to PM2.5 and DBGT on lung function in asthmatics.

Alternate JournalPLoS One
PubMed ID35763502
PubMed Central IDPMC9239441
Projects Reference: 
Silicone Passive Sampling Devices
Silicone Wristband Personal Monitoring Device