Title | Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Geier M, Chlebowski AC, Truong L, Simonich SM, Anderson KA, Tanguay RL |
Journal | Arch Toxicol |
Volume | 92 |
Issue | 2 |
Pagination | 571-586 |
Date Published | 2018 Feb |
ISSN | 1432-0738 |
Animals, Cytochrome P-450 CYP1A1, Embryo, Nonmammalian, Larva, Polycyclic Aromatic Hydrocarbons, Toxicity Tests, Zebrafish | |
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that occur in complex mixtures. Several PAHs are known or suspected mutagens and/or carcinogens, but developmental toxicity data is lacking for PAHs, particularly their oxygenated and nitrated derivatives. Such data are necessary to understand and predict the toxicity of environmental mixtures. 123 PAHs were assessed for morphological and neurobehavioral effects for a range of concentrations between 0.1 and 50 µM, using a high throughput early-life stage zebrafish assay, including 33 parent, 22 nitrated, 17 oxygenated, 19 hydroxylated, 14 methylated, 16 heterocyclic, and 2 aminated PAHs. Additionally, each PAH was evaluated for AHR activation, by assessing CYP1A protein expression using whole animal immunohistochemistry (IHC). Responses to PAHs varied in a structurally dependent manner. High-molecular weight PAHs were significantly more developmentally toxic than the low-molecular weight PAHs, and CYP1A expression was detected in five distinct tissues, including vasculature, liver, skin, neuromasts and yolk. | |
10.1007/s00204-017-2068-9 | |
Alternate Journal | Arch. Toxicol. |
PubMed ID | 29094189 |
PubMed Central ID | PMC5820187 |
Grant List | P42 ES016465 / / National Institute of Environmental Health Sciences / T32 ES07060 / / National Institute of Environmental Health Sciences / P42 ES016465 / ES / NIEHS NIH HHS / United States P30 ES000210 / / National Institute of Environmental Health Sciences / T32 ES007060 / ES / NIEHS NIH HHS / United States P30 ES000210 / ES / NIEHS NIH HHS / United States |