TitleUsing silicone wristbands to evaluate preschool children's exposure to flame retardants.
Publication TypeJournal Article
2016
AuthorsKile ML, Scott RP, O'Connell SG, Lipscomb S, MacDonald M, McClelland M, Anderson KA
JournalEnviron Res
Volume147
Pagination365-72
Date Published05/2016
ISSN1096-0953

Silicone wristbands can be used as passive sampling tools for measuring personal environmental exposure to organic compounds. Due to the lightweight and simple design, the wristband may be a useful technique for measuring children's exposure. In this study, we tested the stability of flame retardant compounds in silicone wristbands and developed an analytical approach for measuring 41 flame retardants in the silicone wristband in order to evaluate exposure to these compounds in preschool-aged children. To evaluate the robustness of using wristbands to measure flame retardants, we evaluated the stability of 3 polybrominated diphenyl ethers (BDEs), and 2 organophosphate flame retardants (OPFRs) in wristbands over 84 days and did not find any evidence of significant loss over time at either 4 or -20°C (p>0.16). We recruited a cohort of 92 preschool aged children in Oregon to wear the wristband for 7 days in order to characterize children's acceptance of the technology, and to characterize their exposure to flame retardants. Seventy-seven parents returned the wristbands for analysis of 35 BDEs, 4 OPFRs, and 2 other brominated flame retardants although 5 were excluded from the exposure assessment due to protocol deviations (n=72). A total of 20 compounds were detected above the limit of quantitation, and 11 compounds including 4 OPFRs and 7 BDEs were detected in over 60% of the samples. Children's gender, age, race, recruitment site, and family context were not significantly associated with returning wristbands or compliance with protocols. Comparisons between flame retardant data and socio-demographic information revealed significant differences in total exposures to both ΣBDEs and ΣOPFRs based on age of house, vacuuming frequency, and family context. These results demonstrate that preschool children in Oregon are exposed to BDEs that are no longer being produced in the United States and to OPFRs that have been used as an alternative to polybrominated compounds. Silicone wristbands were well tolerated by young children and were useful for characterizing personal exposure to flame retardants that were not bound to particulate matter.

10.1016/j.envres.2016.02.034
Alternate JournalEnviron. Res.
PubMed ID26945619
Grant ListP30 ES000210 / ES / NIEHS NIH HHS / United States
Projects Reference: 
Silicone Wristband Personal Monitoring Device