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Classifications of fish production methods, wild or farm-raised salmon, by elemental profiles or C

and N stable isotope ratios combined with various modeling approaches were determined.

Elemental analysis (As, Ba, Be, Ca, Co, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Sr, Ti, and

Zn) of wild and farm-raised salmon samples was performed using an inductively coupled plasma

atomic emission spectroscopy. Isotopic and compositional analyses of carbon and nitrogen were

performed using mass spectrometry as an alternative fingerprinting technique. Each salmon (king

salmon, Oncorhynchus tshawytscha; coho salmon, Oncorhynchus kisutch; Atlantic salmon, Salmo

salar) was analyzed from two food production practices, wild and farm raised. Principal component

analysis (PCA) and canonical discriminant analysis (CDA) were used for data exploration and

visualization. Five classification modeling approaches were investigated: linear discriminate function,

quadratic discriminant function, neural network, probabilistic neural network, and neural network

bagging. Methods for evaluating model reliability included four strategies: resubstitution, cross-

validation, and two very different test set scenarios. Generally speaking, the models performed well,

with the percentage of samples classified correctly depending on the particular choice of model and

evaluation method used.
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INTRODUCTION

The U.S. Department of Agriculture (USDA) recently an-
nounced (January 12, 2009) final regulations for the mandatory
country of origin labeling (COOL) program. The rule covers,
among other items, wild and farm-raised fish. As well, the
European Union (EU) commission regulation (2065/2001) re-
quires informing consumers of aquaculture methods of produc-
tion, including farm-raised or wild-caught (1). Commodities
covered under COOL must be labeled with geographic origin,
and, in the case of fish, the method of production, wild or farm-
raised, must be specified. Although USDA intends to use supply
chain audits to ensure compliance with the rule, scientific tech-
niques that can further support and verify the rule would be
especially valuable.

Recent events such as the alleged contamination of fish from
Chinamake the determination of farm-raised versuswild and geo-
graphic origin a timely scientific inquiry (2).Consumer Reports (3)
described “wild often isn’t, if you paid extra for fresh wild salmon
in late fall and winter, you may have wasted your money”. The
health benefits of salmon arenoteworthy, and theyare anexcellent
source of many nutrients and vitamins, such as vitamin E and
omega-3 oils. Numerous studies have concluded that Americans

should eat more fish. However, reports suggesting some farm-
raised salmonmay have a higher incidence of contaminants (4-6)
and risk (7) may make consumers wary, especially when coupled
with their lack of confidence in product labeling.

The development of chemometric methods that can confirm
label indications in food commodities is therefore opportune.
Development of DNA-based methods to identify fish species has
proven successful (8); however, farm-raised and wild-caught fish
will often be the same species, rendering this technique inadequate
at present. Stable isotope ratio analysis of foods provides a valu-
able probe for both abiotic and biotic origin based on geographical
and biological origin discrimination. Abiotic fractionation asso-
ciated with hydrological cycles and local environments give rise to
informative characteristic isotope ratio signatures for empirical
geographic determination. Biota fractionation reflects character-
istics of their environment through physiology uptake and meta-
bolism of stable isotopes, such as 13C/12C, 15N/14N, 18O/16O, and
2H/1H, which form compounds in organisms. Isotope ratios have
been successfully used in chemical profiling methods to determine
geographic origin of biota (9,10) and seafood (11). Various isotope
ratios of fatty acids have been successfully used to distinguish
origin and production methods of Atlantic salmon (12-14). The
13C nuclear magnetic resonance or gas chromatography isotope
ratio mass spectrometry analysis of fatty acids, however, can be
labor intensive. The extraction of fatty acids for isotope analysis
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generally requires extraction of the fish oils, saponification, fatty
acidmethyl esters generation, various liquid/liquid exchanges, and
solvent reductions. Bulk isotopic analysis on the fish muscle tissue
would present fewer chemical manipulations, although previous
studies have not used bulk isotope ratios to distinguish salmon
production methods.

Although elemental profiles have been used to distinguish
geographic origin of plants (15, 16) and mussels (17), this
approach has not been applied to production methods for
salmon. Different feeding and living environments likely would
contribute to element differences in salmon, whereas hemostasis
mechanisms may reduce this affect. Previous studies have not
applied elemental profiles to salmon production methods.

The aim of the present study was to demonstrate the feasibility
of employing models to use either bulk stable isotopes from fish
fillets or elemental profiles to independently and successfully
distinguish farm-raised versus wild-caught salmon. In addition,
rarely are Pacific Ocean salmon included in fish production
studies, and in none of the studies to date, are both wild and
farm-raised Pacific salmon included with scale. We initiated a
substantial-scale analysis sampling in a total of 145 Pacific Ocean
salmon with authentic production origin over a 3 year period.
These salmon were then modeled using five different modeling
approaches with robust evaluation of each method with four
different approaches. Obtaining good modeling results indepen-
dently using two different types of data sets, elements, or isotopes
provides converging lines of scientific evidence for salmon pro-
ductionmethod. A continuing challenge for a study of this nature
is to ensure that sample size and data used to develop the
predictions or models in fact represent all of the underlying
variability of the population. We examined the sample size
question by limiting our training data set to only 12% of the
total fish sampled. This type of testing of test set sizes has not been
done before in fish profile studies; this evaluation provides insight
into the modeling approach and sample size question.

MATERIALS AND METHODS

Reagents. Elemental stock standard solutions were purchased form
Alfa Aesar Specpure (Ward Hill, MA) and J. T. Baker Plasma grade (St.
Louis, MO). Optima grade concentrated nitric acid was purchased from
Fisher (Pittsburgh, PA). All water used was 18 MΩ-cm water from a
Barnstead EASYpureUV D7401 (Dubuque, IA). Certified reference
materials (CRMs) were purchased from the the National Institute of
Standards andTechnology (NIST,Gaithersburg,MD) and stored accord-
ing to recommendations (18). CRMs included NIST 1566b oyster tissue
and NIST 2977 mussel tissue for elemental analysis; NIST 8542 sucrose,
NIST 8550 ammonium sulfate, and acetanilide (Carlo Erba, Italy) were
used for calibration and to monitor instrument performance of composi-
tional and isotopic analysis.

Instrumentation: Elemental Analysis. Samples were analyzed for
As, Ba, Be, Ca, Cd, Co, Cu, Cr, Fe, K,Mg,Mn, Na, Ni, P, Pb, Sr, Ti, and
Zn using a Varian Liberty 150 ICP-AES with a V-groove nebulizer and a
Varian SPS5 autosampler system (Varian, Palo Alto, CA). The following
parameters were employed: 85 psi; scan integration time, 1 s (all elements);
acid flexible tubing, 0.030 mm internal diameter (i.d.); replicates, two (all
elements); scan window (first order), 0.120 nm; photomultiplier, tube
voltage, 650 V; plasma flow, 15 L/min; auxiliary flow, 1.50 L/min; sample
uptake delay, 13 s; pump rate, 15 rpm; instrument stabilization, delay, 13 s;
and rinse time, 60 s. The wavelengths selectedwere as follows: As, 189.042;
Ba, 455.403r; Be, 313.042; Ca, 422.673r; Cd, 214.441; Co, 288.615; Cr,
267.716; Cu, 324.754; Fe, 259.940; K, 766.491r; Mg, 279.078r; Mn,
293.306; Na, 589.592r; Ni, 231.604; P, 214.914; Pb 220.353; Sr, 407.771r;
Ti, 334.941r; and Zn, 206.200. Additional instrumental details are as
described in Anderson and Smith (16).

Isotopic Analysis. Carbon (δ13C) and nitrogen (δ15N) isotope ratios
and bulk compositions were measured with a Carlo Erba NA1500 ele-
mental analyzer for separationwith a CosTech “Zero Blank” autosampler

(CosTech Anaytical Technologies, Inc., Valencia, CA), helium dilution
and reference gas verification via Finnigan/MAT CONFLO-III (Thermo
Finnigan, Waltham, MA) interface, and detection via Finnigan/MAT
DeltaPlusXLmass spectrometer. Instrumental conditions are described by
Roy et al. (19) and Perez (10). Reference materials from NIST and Carlo
Erba were used to calibrate the isotope ratios of local reference gases. The
abundance of the two most abundant isotopes of carbon and nitrogen in
the sample were determined by triple-collectormass spectrometer and then
reported relative to separate injections of the local reference gases. Isotopic
data use the isotopic notation (δ), in parts per mil (%) relative to the
universal standards PeeDee Belemnite (PDB) for carbon and atmospheric
air (15N) for nitrogen. By convention, the following equation for δ was
used for carbon (and an analogous equation for nitrogen):

δ13C ¼ f½ð13C=12CsampleÞ- ð13C=12CstdÞ�=ð13C=12CstdÞg � 1000

Sampling and Preparation. A total of 145 fish were collected from
2006 to 2008 as close to the source as possible and directly from trusted
distributors. Wild and farm-raised (n= 64, and 81 respectively) included
king salmon, Oncorhynchus tshawytscha, coho salmon, Oncorhynchus
kisutch, and Atlantic salmon, Salmo salar. Each year/season both farm-
raised and wild-caught were collected with similar numbers for each
salmon species. Production method, fish species, producer lot number,
collection data, year, and season were known for all fish. Five different
aquaculture facilities were sampled. Both farm-raised and wild-caught
include king and coho salmon. All king and coho salmon were from the
Pacific Ocean, and all fish samples used are common salmon in the
marketplace.All fishwere transported on ice, stored at 4 �C, and processed
within a few days of receipt. A test portion of nominally 100-200 g of
skinned filets was taken from individual fish. The fish were freeze-dried
and homogenized via a grinder for both elemental and isotopic analyses.
Often in the marketplace consumer’s purchase a fillet, and it is difficult to
distinguish species beyond that it is salmon, so we explicitly did not
separate out different species of salmon because this information would
not be a priori known by all consumers. By including different salmon
species we have in fact made the modeling and hypothesis more challeng-
ing but more realistic of consumer needs and the study objective.

Elemental Analysis. A test portion of 0.5 g was placed into a 10 mL
graduated Kimax digest tube with 1 mL of nitric acid and digested at
ambient temperature overnight. Two milliliters of nitric acid was added,
and the sample was placed on a heating block; the temperature was
ramped at approximately 15 �C/h to 120 �C. Samples were digested until
NO2 gas evolution stopped; samples were diluted to a final volume of
10 mL with water (Barnstead 18MΩ-cm), cooled, and vortexed. Samples
were decanted into luer-lock syringes and filtered through a Pall PVDF
0.45 μm filter into sample-receiving containers until ICPAES analysis.

Isotopic Analysis.A test portion of approximately 1 mg was weighed
using a Mettler Toledo UMT2 ultramicrobalance (Mettler Toledo,
Columbus, OH), placed into CosTech tin capsules, and then rolled into
spheres. Weighed test portions and standard reference materials were
stored in CosTech 96-well plates at room temperature until analysis.

Quality Control. Quality control consisted of blanks, check stan-
dards, matrix duplicates, matrix over spikes, and certified reference mate-
rials (CRMs). Quality control samples represented about 20% of all
samples analyzed. Instrument calibration consisted of three or more
calibration standards; all calibration curves had R2>0.99. Recoveries of
matrix over spikes ranged from 96.5 to 118.5%, and recovery of all metals
from all CRMs ranged from 92.8 to 95.2%; recoveries of individual
elements used in the modeling from CRMs are presented in Table 1. A
minimum of 10% of all fish were analyzed as duplicate for stable isotopes,
with an average RPD of <3.63% for both δ values and bulk composi-
tions. Acetanilide was an abundant and isotopically homogeneous in-
house reference material used to monitor instrumental precision; instru-
ment runs included 5 replicates for a total of 28 replicates throughout the
course of this project. Results indicated a precision of (0.12% δ15N,
(0.28% bulk N, (0.24% δ13C, and (0.71% bulk C.

Statistical Analysis. Several statistical analysis methods were applied
to the data. Multiple-comparison ANOVAwas used in analysis by Sigma
Stat for Windows, version 2.0 (Systat, Point Richmond, CA). Principal
component analysis (PCA), canonical discriminant analysis (CDA),
linear discriminant function analysis (LDA), and quadratic discriminant
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function analyses (QDA) were applied utilizing SAS version 9.1 (SAS
Institute Inc., Cary, NC) and neural network (NN) and probabilistic
neural network (PNN) analysis usingNeuroShell Classifer (Ward Systems
Group, Inc., V2.2, Frederick, MD). Neural network bagging (NNB) was
applied using Matlab version 7.8 (TheMathWorks, Natick, MA).

Data analyses included looking at box plots of individual elements or
stable isotope ratios corresponding to farm-raised and wild-caught sal-
mon. However, better resolution for distinguishing farm-raised and wild-
caught salmon was obtained by several comprehensive modeling analyses
of elemental or stable isotope profiles. PCAmodels total data variation in
terms of principal components. The first component explains maximal
variation in one dimension. Subsequent components explain maximal
variation unexplained by previous component combinations, and each
component explains less variation than individual preceding components,
tending to concentrate total variation in a few uncorrelated components.
PCA does not use sample group information but is often useful for data
exploration, sometimes revealing visual group clustering. Data were
plotted using principal components explaining appreciable percentages
of the total variation. Different pairwise combinations of principal
components were explored to look for patterns tending to showdifferences
between farmed-raised and wild-caught salmon groups.

CDA, like PCA, is a variable reduction technique. Unlike PCA, CDA
includes sample group information producing components, or variables,
along which differences between groups are maximized while differences
within a group are minimized. CDA was used to provide data views
highlighting differences between the two groups, farm-raised and wild-
caught salmon.

Classification modeling methods discussed in this paper include LDA,
QDA, NN, PNN, and NNB (20), previously described (16). Each trained
model required fish chemical data togetherwith sample groupdesignation.
A trained model can then be used to classify fish chemical profiles with
unknown group designation. Presumably the training set contains impor-
tant characteristics of larger populations.Model application and reliability
were evaluated in a number of ways, discussed next.

To help gauge model reliability, up to four approaches were tried:
resubstitution, cross-validation, and two test set strategies with dramati-
cally different test set sample sizes. Resubstitution used all of the data
to make models, which then classified this same data set. For cross-
validation, one fish was held out duringmodel training and then classified.
This process was repeated stepwise for all samples. Applying the first test
set strategy, about 88% of the data were randomly selected for modeling;
the remaining 12%of the datawere then classified, treated as “unknowns”.
Reversing set sizes, only 12% of the data were chosen for model training,
when the second test set scenario was applied, whereas the other 88%
formed the test set, “unknowns”. Classification performances for each
classification model for the production methods, farmed raised or wild
caught, are discussed in the following section.

RESULTS AND DISCUSSION

Element Profile forModeling Salmon ProductionMethod.Eight
elementswere consistently above detection limits: arsenic, copper,
calcium, magnesium, sodium, phosphorus, potassium, and zinc.
Cadmium, chromium, lead, and nickel were often near or below
detection limits. Box plots (Figure 1) are shown for both farm-
raised andwild-caught salmon; the boundary of the box closest to
zero indicates the 25th percentile, the solid lines within the box
mark the mean and median, the boundary of the box farthest

from zero indicates the 75th percentile. Whiskers above and
below the box indicate the 90th and 10th percentiles, whereas
the symbols represent the 5th and 95th percentiles. The P values
are shown for each box plot. Simple elemental distribution plots
showing clustering by geographic origin have been somewhat
predictive in previous studies (16 , 21 ). In the present study,
individual or pairwise plotting combinations of the individual
elements did not significantly distinguish between groups of
salmon production methods (data not shown). This is similar to
previous studies with other target analytes; simple individual or
pairwise combinations were not in themselves distinguishing
(12, 22) of fish production methods.

Multivariatemodeling techniqueswere therefore applied. PCA
results showed that the first three components explained most of
the variability in the elemental data. Plotting component 1 versus
component 2 showed good clustering of farmed-raised and wild-
caught salmon groups (Figure 2A). CDAproduced one canonical
variable because there were two groups. The data were plotted
along this variable using a frequency chart (Figure 2B) and dis-
play group differences while utilizing only the elemental data.

Five classification models were investigated with up to four
evaluation strategies considered.Results are summarized inTable 2.
The upper half of the table corresponds to elemental profile data
and the lower half to isotope profile data. The data in Table 2

indicate the correctly classified percentages for the appropriate
modeling and evaluation approach. The fourmain labels across the
top of the table describe a particular evaluation scenario employed.
Generally, classification rates are goodwith one exception. Overall,
neural network models appear to perform somewhat better than
discriminant function models. Rates are generally higher corre-
sponding to evaluations using larger training sets. The significance
of the evaluation method is discussed further in a later subsection.
Geographic authenticity methods using 8-25 elements and com-
parable modeling approaches have reported similar success rates
(9,10,16). Smith andWatts recently reportedusing a suite ofmetals
coupled with discriminant analysis modeling and found it was
effective for predicting geographic authenticity of shrimp (11).
Using over 150 chemical shifts combined with probabilistic neural
networks, Aursand et al. (23) was able to correctly classify 47 of 52
(90%) wild-caught salmon correctly and 136 of 143 farm-raised
salmon (95%). Although chemical analysis of fatty acids can be
labor intensive, a Bayesian belief network based on fatty acids
generally correctly classifiedwith success rates of>95%,oftenwith
100% success (22). However, modification of the fatty acid content
of feed often occurs prior to slaughter inmany aquaculture systems
with the intent to more closely resemble wild fish. Changes in fatty
acid feed composition may lead to changes in the fatty acid profile
in farm-raised fish and raise recognized concerns about fish pro-
duction methods based on fatty acids.

Isotope Profile Modeling for Salmon Production Method.

Whereas the eight-element-based models were effective for visua-
lization and classification modeling, isotope data also proved
useful for model development and evaluation. Total bulk carbon

Table 1. Average Recoveries of Elements Used in Modeling, in Standard Reference Materials and Matrix Spikes

standard reference material n As Cu Zn Na Ca K Mg P

oyster tissue, NIST 1566b 5 93.2 ( 5.8 103.9( 16.2 99.6( 7.4 92.5 ( 2.3 98.0( 7.0 89.7( 6.6 93.3 ( 21 NCa

apple leaf, NIST 1515 4 BDLb 95.0 ( 22.6 93.6( 6.9 BDL 90.2( 5.8 89.5( 8.7 96.1 ( 1.9 88.3 ( 3.7

tomato leaf, NIST 1573a 2 BDL 108.9 93.7 BDL 74.3 93.0 87.2 90.3

mussel tissue, NIST 2977 4 88.5 ( 5.4 97.5( 21.1 93.9( 6.7 89.8 ( 9.4 92.3( 6.5 100.5( 6.1 NC 90.9 ( 4.3

n As (þ 5 ppm) Cu (þ5 ppm) Zn (þ5 ppm) Na (þ 100 ppm) Ca (þ100 ppm) K (þ100 ppm) Mg (þ100 ppm) P (þ100 ppm)

matrix over spike 14 119.2 ( 6.2 87.8 ( 176 101.1 ( 10.4 102.3 ( 5.5 975 ( 7.6 100.8 ( 23.2 106.5 ( 6.6 106.9 ( 20.1

aNC, not certified. b BDL, below detection limit.
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and nitrogen and δ13C and δ15N values were determined. Box
plots (Figure 3) are shown for both salmon production methods
(box plot format discussed above). Stable carbon isotopes have
been successfully used to distinguish the geographic origin of
honey without modeling (24). Whereas P values, reported within
each box plot, are<0.05, because of overlap, classification of fish
production methods by isotopes is not possible. Multivariate
methods were then applied. As with the elemental data, applying
PCA and CDA as variable reduction techniques provided good
visualization of group distinction, as shown inFigure 4.Modeling
the data further explored the feasibility of classifying salmon
samples according to production method.

Overall, the classification modeling methods performed well,
frequently correctly classifying sampleswith a>90%success rate
on average. Utilizing only the bulk C, N, and isotope ratios, the
LDF, QDF, NN, PNN, and NNB had nominally similar success
rates, ranging from 86 to 100% success. Molkentin et al. found
that artificial neural network models using a combination of
isotope ratios and fatty acidswere effective atmodeling organically

farmed and wild-caught salmon for their data set (13 ). In the
present study it was not necessary to combine the isotope and
elemental data; independently the isotopes and elemental models
classified well (Table 2).

Model Comparison Based on Training Set Size. Discussion of
database size continues to be a critical point of food authenticity
studies (15, 25). Although most chemical profiling studies of
fish have sample sizes similar to or smallter than our data set
(12,14,22,26), sample size continues to be an essential question.
As a more extreme test of our various models a smaller training
set scenariowas employedwherein only a fraction of the datawas
used to train the five models. The large training set method used
nominally 125 samples (88%) of the data. In contrast, the small
training set used only nominally 20 samples to make the models
and then tested the fish samples. This approach represents amore
rigorous measure of modeling effectiveness. The larger training
set performed well with all models tested; many of the element-
based models performed with 100% success, and all with >88%
success rates. In contrast, the elementmodels constructedwith the

Figure 1. Element concentrations (mg/kg) and isotope ratios of farm-raised (n = 64) and wild-caught salmon (n = 81). Farm-raised salmon are indicated by
the gray boxes and wild-caught are indicated by the white boxes. Significant separation was determined using aWilcoxon signed-rank test. The boundaries of
the box and whisker plots indicate the 25th and 75th (top and bottom) percentiles. The lines within the boxmark themean and themedian. The whiskers above
and below the box indicate the 90th and 10th percentiles. The 5th and 95th percentiles are indicated with circles.
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small training set were not as successful. Although the LDA,NN,
NNB, and PNN models were remarkably successful (>75%),
QDAwas not effective overall, with 56, 18, and 100% success for
all fish, wil-caught, and farm-raised, respectively. As one would
expect, the large training setmodelswere themost successful. This
general trend was also observed for the isotope-based models,
although the difference between the large and small training set

modelswas quite small. Inmany cases only a fewpercentagepoint
difference was observed between the large and small training sets
for the isotope models.

Whereas most of the models fared quite well with the other
evaluation methods, typically with >92% success rates, the
smaller modeling set presented increased challenges for all mod-
eling approaches. Simplistically, this illustrates the need to have
robust databases to make the models. In this small data set case
experiment, the models generally had less success, although
remarkably many models still were reasonably successful when
using a mere 20-sample training set. For instance, neural net-
works and neural network with bagging utilizing the element-
based models were both reasonably successful. The isotope-
generatedmodels were also remarkably successful with successful
rates of>80%,with neural network and probablisitic models the
most successful.

Model Analyte Sensitivity Analysis. Previous studies have used
sensitivity analysis from neural network models to determine the
relative rank of chemical components used in the model. Sensi-
tivity analysis reports some measure of the importance of the
individual chemical components and has been proposed to allow
for a reduced number of inputs for further calculations. Non-
linear models depend in part on all variables used, and the
concept of individual variable contribution on a dependent-
variable construct is inexact. In a fatty acid and isotope salmon
study based on the sensitivity analysis, the authors proposed
reducing to four fatty acids without reduction of classification
success (13).However, there are limitations to this kindof ranking
whenusing nonlinearmodels; the contributionof a single variable
to a model composed of many variables is an imprecise concept.
One might expect that the development of numerous models
would lead to different solutions with different combinations of
variables, different variable rankings, and yet similar successful
classifications. Aursand et al. found that their Atlantic salmon
models indeed frequently yielded different variable rankings (12).
As but one example, Table 3 shows that rankings of the elements
in two models generated in the present study were indeed
substantively different. In one of the large training set models
Na and K were most important, whereas copper and zinc were
least important. In contrast, for one of the small training set
models copper and arsenic were most important. Both models,
small and large training sets, were reasonably successful in
classifying wild and farm-raised salmon, on average >93 and
100%, respectively, yet the variable ranking was quite different.

Figure 2. (A) Principal component 1 versus principal component 2 for the
elemental chemical profile in farm-raised (gray symbols) and wild (white
symbols) Pacific salmon (n = 145). (B) Canonical discriminant analysis
(CDA) frequency histogram using CDA1 representing the two groups of
farm-raised (gray bars) and wild-caught salmon (n = 145) (white bars)
using all eight elements.

Table 2. Percentage of Samples Classified Correctly by Linear Discriminant Function, Quadratic Discriminant Function, Neural Network, Probabilistic Neural
Network, and Neural Network Bagging, Based on the Element Concentrations or the Stable Isotope Ratio Profiling

resubstitution cross-validation training set model to test set test set model to training set

all fish wild farmed all fish wild farmed all fish wild farmed all fish wild farmed

Elements Only

linear discriminant function 96 94 98 95 92 98 95 88 100 84 75 91

quadratic discriminant function 98 100 96 95 100 91 95 100 91 56 18 100

neural network 99 97 100 naa na na 100 100 100 94 91 96

probablistic neural network 99 98 100 na na na 95 100 91 86 75 94

neural network bagging 100 100 100 na na na 100 100 100 92 84 99

Stable Isotopes Only

linear discriminant function 98 98 98 96 95 96 95 88 100 92 100 86

quadratic discriminant function 99 100 99 97 100 95 95 88 100 87 88 86

neural network 100 100 100 na na na 95 88 95 94 100 88

probablistic neural network 99 100 99 na na na 100 100 100 94 95 94

neural network bagging 100 100 100 na na na 89 87 90 87 79 99

a na, not applicable.
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Whereas applicable interpretation of variable ranking between
models is limited, within a singlemodel variable ranking provides
some insight potentially for method simplification.

Yearly and seasonal variabilities were cautiously investigated
because fish for each year or season were not always from the
same farm.Multiple years and multiple seasons did display some

small variations in their chemical profile (data not shown).
Overall, the magnitude of the yearly or seasonal differences
between farm-raised and wild salmon is small compared with the
production method differences. Similar magnitude differences
were reported for pistachios (27) and fruit (28); although seasonal
differences were observed and could in themselves be modeled,
they were small in comparison to geographic differences.We also
did a cursory evaluation of fish production method by fish
species. Whereas the data were encouraging, the evaluation was
beyond the original study objectives, and additional salmon
samples were warranted. Although year, season, and species
could be parsed out into other modeling approaches, the objec-
tives of this study were to determine a proof of concept for
farming practices in consumer-based conditions. Often fish fillets
are sold inmarkets and the salmon species is not known; also, the
fish may have been frozen, so season may not be known. There-
fore, our database for modeling represents a realistic market-
place, consumer-driven approach for determining farm-raised or
wild salmon. By including different salmon species and different
years and seasons, we have in fact made the modeling and hypo-
thesis more challenging but more realistic of consumer needs.

Concluding Remarks.Creating a fingerprint or unique chemical
signature using trace elements or stable isotope ratios may serve
as a cost-effective approach toward determining fish production
methods because both approaches require minimal chemical
manipulation or preparation. The two-independent-model ap-
proach based on separate data sets, elements or isotopes, provides
converging lines of scientific evidence for salmon production
method. This may further strengthen conclusions and potential
ligation approaches. The identification of distinct elemental
signature effects on wild and farm-raised salmon has not pre-
viously been described. The ease and efficiency of element and
bulk stable isotope analysis make it an optimal choice for fish
production determination of salmon. The databases were devel-
oped to represent a realistic consumermarketplacewherein salmon
species and season may not be known. Within the framework of

Figure 3. Isotope ratio box plots of farm-raised (n = 64) (white boxes) and wild-caught salmon (n = 81) (gray boxes). Description of box plot format provided
in Figure 1 caption.

Figure 4. (A) Principal component 1 versus principal component 3 for the
stable carbon and nitrogen isotopes ratios and bulk C/N ratio (n = 145). (B)
canonical discriminant analysis (CDA) frequency histogram using CDA1
representing the two groups of farm-raised and wild-caught salmon
(n = 145) from the stable carbon and nitrogen isotopes and bulk C/N ratios.
Farm raised and wild caught denoted by gray and white, respectively.

Table 3. Neural Network Model: Relative Ranked Importance of Inputs Used
To Classify Farm-Raised and Wild-Caught Salmon

neural model As Ca Cu K Mg Na P Zn

with large training set 3 4 7 2 5 1 6 8

with small training set 2 8 1 4 3 6 7 5
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this study, it appears that determining the fish productionmethods
of salmonmay be feasible throughmodeling of either their element
profile or isotope ratio. The progression of this type of profiling
study includes the addition of other geographic regions, additional
seasonal variation, and additional salmon species from more
locations. This information may ultimately increase food safety
measures and command accountability in global food production.

ABBREVIATIONS USED

CDA, canonical discriminant analysis; COOL, country of
origin labeling; LDA, linear discriminant function analysis;
NN, neural network; NNB, neural network bagging; PCA, prin-
cipal component analysis; PNN, probabilistic neural network;
QDA, quadratic discriminant function analysis; USDA, U.S.
Department of Agriculture.

LITERATURE CITED

(1) Martinez, I.; Aursand, M.; Erikson, U.; Singstad, T. E.; Veliyulin,
E.; van der Zwaag, C. Destructive and non-destructive analytical
techniques for authentication and composition analyses of food-
stuffs. Trends Food Sci. Technol. 2003, 14 (12), 489-498.

(2) Barboza, D. In China, farming fish in toxic waters. The New York
Times 2007, p 4.

(3) The salmon scam. Consumer Rep. 2006, Aug, 15.
(4) Hites, R.; Foran, J.; Carpenter, D.; Hamilton, M.; Knuth, B.;

Schwager, S. Global assessment of organic contaminants in farmed
salmon. Science 2004, 303, 226-229.

(5) Friesen, E. N.; Ikonomou, M. G.; Higgs, D. A.; Ang, K. P.; Dubetz,
C. Use of terrestrial based lipids in aquaculture feeds and the effects
on flesh organohalogen and fatty acid concentrations in farmed
Atlantic salmon. Environ. Sci. Technol. 2008, 42 (10), 3519-3523.

(6) Milstein, M. Fish imported with fungicide. The Oregonian Sunday
June 5, 2005, pp 1E, E10.

(7) Foran, J. A.; Carpenter, D. O.; Hamilton, M. C.; Knuth, B. A.;
Schwager, S. J. Risk-based consumption advice for farmed Atlantic
and wild Pacific salmon contaminated with dioxins and dioxin-like
compounds. Environ. Health Perspect. 2005, 113 (5), 552.

(8) Gil, L. A. PCR-based methods for fish and fishery products
authentication. Trends Food Sci. Technol. 2007, 18 (11), 558-566.

(9) Anderson, K. A.; Smith, B. W. Effect of season and variety on the
differentiation of geographic growing origin of pistachios by stable
isotope profiling. J. Agric. Food Chem. 2006, 54, 1747-1752.

(10) Perez, A. L.; Smith, B. W.; Anderson, K. A. Stable isotope and trace
element profiling combined with classification models to differenti-
ate geographic growing origin for three fruits: effects of sub-region
and variety. J. Agric. Food Chem. 2006, 54 (13), 4506-4516.

(11) Smith, R. G.; Watts, C. A. Determination of the country of origin
of farm-raised shrimp (family Penaeide) using trace metal profiling
and multivariate statistics. J. Agric. Food Chem. 2009, 57 (18),
8244-8249.

(12) Aursand, M.; Standal, I. B.; Praël, A.; McEvoy, L.; Irvine, J.;
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