%0 Journal Article %J PLoS One %D 2022 %T Impact of acute temperature and air pollution exposures on adult lung function: A panel study of asthmatics. %A Evoy, Richard %A Laurel D Kincl %A Diana Rohlman %A Lisa M Bramer %A Holly Dixon %A Hystad, Perry %A Bae, Harold %A Michael L Barton %A Phillips, Aaron %A Miller, Rachel L %A Katrina M Waters %A Julie Herbstman %A Kim A Anderson %K Adult %K Air Pollution %K Asthma %K Bronchodilator Agents %K Environmental Exposure %K Humans %K Lung %K Temperature %X

BACKGROUND: Individuals with respiratory conditions, such as asthma, are particularly susceptible to adverse health effects associated with higher levels of ambient air pollution and temperature. This study evaluates whether hourly levels of fine particulate matter (PM2.5) and dry bulb globe temperature (DBGT) are associated with the lung function of adult participants with asthma.

METHODS AND FINDINGS: Global positioning system (GPS) location, respiratory function (measured as forced expiratory volume at 1 second (FEV1)), and self-reports of asthma medication usage and symptoms were collected as part of the Exposure, Location, and Lung Function (ELF) study. Hourly ambient PM2.5 and DBGT exposures were estimated by integrating air quality and temperature public records with time-activity patterns using GPS coordinates for each participant (n = 35). The relationships between acute PM2.5, DBGT, rescue bronchodilator use, and lung function collected in one week periods and over two seasons (summer/winter) were analyzed by multivariate regression, using different exposure time frames. In separate models, increasing levels in PM2.5, but not DBGT, were associated with rescue bronchodilator use. Conversely DBGT, but not PM2.5, had a significant association with FEV1. When DBGT and PM2.5 exposures were placed in the same model, the strongest association between cumulative PM2.5 exposures and the use of rescue bronchodilator was identified at the 0-24 hours (OR = 1.030; 95% CI = 1.012-1.049; p-value = 0.001) and 0-48 hours (OR = 1.030; 95% CI = 1.013-1.057; p-value = 0.001) prior to lung function measure. Conversely, DBGT exposure at 0 hours (β = 3.257; SE = 0.879; p-value>0.001) and 0-6 hours (β = 2.885; SE = 0.903; p-value = 0.001) hours before a reading were associated with FEV1. No significant interactions between DBGT and PM2.5 were observed for rescue bronchodilator use or FEV1.

CONCLUSIONS: Short-term increases in PM2.5 were associated with increased rescue bronchodilator use, while DBGT was associated with higher lung function (i.e. FEV1). Further studies are needed to continue to elucidate the mechanisms of acute exposure to PM2.5 and DBGT on lung function in asthmatics.

%B PLoS One %V 17 %P e0270412 %8 2022 %G eng %N 6 %R 10.1371/journal.pone.0270412 %0 Audiovisual Material %D 2015 %T Impact of natural gas extraction on PAH levels in ambient air %A LB Paulik %A Carey E Donald %A Brian W Smith %A Lane G Tidwell %A Kevin A Hobbie %A Laurel D Kincl %A Erin N Haynes %A Kim A Anderson %B SETAC Europe 25th Annual Meeting, Barcelona, Catalonia, Spain %8 05/2015 %G eng %0 Journal Article %J Environ Sci Technol %D 2015 %T Impact of natural gas extraction on PAH levels in ambient air. %A LB Paulik %A Carey E Donald %A Brian W Smith %A Lane G Tidwell %A Kevin A Hobbie %A Laurel D Kincl %A Erin N Haynes %A Kim A Anderson %X

Natural gas extraction, often referred to as "fracking," has increased rapidly in the U.S. in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. PAH levels were highest when samplers were closest to active wells. Additionally, PAH levels closest to natural gas activity were an order of magnitude higher than levels previously reported in rural areas. Sourcing ratios indicate that PAHs were predominantly petrogenic, suggesting that elevated PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. Closest to active wells, the risk estimated for maximum residential exposure was 2.9 in 10,000, which is above the U.S. EPA's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest. This work suggests that natural gas extraction may be contributing significantly to PAHs in air, at levels that are relevant to human health.

%B Environ Sci Technol %V 49 %P 5203-5210 %8 03/2015 %G eng %N 8 %R 10.1021/es506095e %0 Audiovisual Material %D 2014 %T Impact of Unconventional Natural Gas Drilling on Air Quality in Easter Ohio: A Collaborative Supplement between the University of Cincinnati and Oregon State University %A Erin N Haynes %A Laurel D Kincl %A Kim A Anderson %A Diana Rohlman %A Elam, S. %A Feezel, P. %A Kuhnell, P. %A Kevin A Hobbie %A Lane G Tidwell %A LB Paulik %A Carey E Donald %A Alden, J. %A Brown, D. %B EHS Center Meeting. Los Angeles, CA. %8 04/2014 %G eng