%0 Journal Article %J Anal Bioanal Chem %D 2018 %T Silicone wristbands compared with traditional polycyclic aromatic hydrocarbon exposure assessment methods %A Holly Dixon %A Richard P Scott %A Darrell Holmes %A Lehyla Calero %A Laurel D Kincl %A Katrina M Waters %A David Camann %A Antonia M Calafat %A Julie Herbstman %A Kim A Anderson %X

Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside two traditional personal PAH exposure assessment methods: active air monitoring with samplers (i.e., polyurethane foam (PUF) and filter) housed in backpacks, and biological sampling with urine. We demonstrate that wristbands worn for 48 h in a non-occupational setting recover semivolatile PAHs, and we compare levels of PAHs in wristbands to PAHs in PUFs-filters and to hydroxy-PAH (OH-PAH) biomarkers in urine. We deployed all samplers simultaneously for 48 h on 22 pregnant women in an established urban birth cohort. Each woman provided one spot urine sample at the end of the 48-h period. Wristbands recovered PAHs with similar detection frequencies to PUFs-filters. Of the 62 PAHs tested for in the 22 wristbands, 51 PAHs were detected in at least one wristband. In this cohort of pregnant women, we found more significant correlations between OH-PAHs and PAHs in wristbands than between OH-PAHs and PAHs in PUFs-filters. Only two comparisons between PAHs in PUFs-filters and OH-PAHs correlated significantly (r = 0.53 and p = 0.01; r = 0.44 and p = 0.04), whereas six comparisons between PAHs in wristbands and OH-PAHs correlated significantly (r = 0.44 to 0.76 and p = 0.04 to <0.0001). These results support the utility of wristbands as a biologically relevant exposure assessment tool which can be easily integrated into environmental health studies. Graphical abstract PAHs detected in samples collected from urban pregnant women.

%B Anal Bioanal Chem %8 04/2018 %G eng %R 10.1007/s00216-018-0992-z %0 Audiovisual Material %D 2018 %T Silicone wristbands compared with traditional polycyclic aromatic hydrocarbon exposure assessment methods %A Holly Dixon %A Richard P Scott %A Darrell Holmes %A Lehyla Calero %A Laurel D Kincl %A Katrina M Waters %A David Camann %A Antonia M Calafat %A Julie Herbstman %A Kim A Anderson %B 3rd Tribal Environmental Health Summit, Corvallis, OR %C Corvallis, Oregon %8 06/2018 %G eng %0 Journal Article %J Toxicol Appl Pharmacol %D 2013 %T Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish. %A Goodale, Britton C %A Susan C Tilton %A Corvi, Margaret M %A Glenn R Wilson %A Janszen, Derek B %A Kim A Anderson %A Katrina M Waters %A Robyn L Tanguay %K Animals %K Embryo, Nonmammalian %K Polycyclic Hydrocarbons, Aromatic %K Structure-Activity Relationship %K Transcription, Genetic %K Zebrafish %X

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.

%B Toxicol Appl Pharmacol %V 272 %P 656-70 %8 11/2013 %G eng %N 3 %1 http://www.ncbi.nlm.nih.gov/pubmed/23656968?dopt=Abstract %R 10.1016/j.taap.2013.04.024 %0 Audiovisual Material %D 2013 %T Systems & Data Management at the Environmental Health Sciences Center %A Michael L Barton %A Kevin A Hobbie %A Elena S Peterson %A Beckman, Joseph S %A Kim A Anderson %A Katrina M Waters %B FSES Advisory Council Meeting %8 06/2013 %G eng %0 Audiovisual Material %D 2013 %T Systems & Data Management at the Environmental Health Sciences Center %A Michael L Barton %A Kevin A Hobbie %A Elena S Peterson %A Beckman, Joseph S %A Kim A Anderson %A Katrina M Waters %B CGRB Spring Conference %8 04/2013 %G eng %0 Audiovisual Material %D 2012 %T Solving the data integration problem for a Superfund Research Program Center %A Elena S Peterson %A Kevin A Hobbie %A Michael L Barton %A Walker, Hyunjoo J. %A Kim A Anderson %A Katrina M Waters %B Society of Toxicology 51st Annual Meeting %C San Francisco, CA %8 2012 %G eng