%0 Journal Article %J Environ Toxicol Chem %D 2017 %T Diffusive flux of PAHs across sediment-water and water-air interfaces at urban superfund sites. %A D James Minick %A Kim A Anderson %K Air %K Cities %K Geologic Sediments %K Hazardous Waste Sites %K Oregon %K Polycyclic Aromatic Hydrocarbons %K Rivers %K Water %K Water Pollutants, Chemical %X

Superfund sites may be a source of polycyclic aromatic hydrocarbons (PAHs) to the surrounding environment. These sites can also act as PAH sinks from present-day anthropogenic activities, especially in urban locations. Understanding PAH transport across environmental compartments helps to define the relative contributions of these sources and is therefore important for informing remedial and management decisions. In the present study, paired passive samplers were co-deployed at sediment-water and water-air interfaces within the Portland Harbor Superfund Site and the McCormick and Baxter Superfund Site. These sites, located along the Willamette River (Portland, OR, USA), have PAH contamination from both legacy and modern sources. Diffusive flux calculations indicate that the Willamette River acts predominantly as a sink for low molecular weight PAHs from both the sediment and the air. The sediment was also predominantly a source of 4- and 5-ring PAHs to the river, and the river was a source of these same PAHs to the air, indicating that legacy pollution may be contributing to PAH exposure for residents of the Portland urban center. At the remediated McCormick and Baxter Superfund Site, flux measurements highlight locations within the sand and rock sediment cap where contaminant breakthrough is occurring. Environ Toxicol Chem 2017;36:2281-2289. © 2017 SETAC.

%B Environ Toxicol Chem %V 36 %P 2281-2289 %8 2017 09 %G eng %N 9 %R 10.1002/etc.3785 %0 Journal Article %J Environ Toxicol Chem %D 2010 %T Ketone and quinone-substituted polycyclic aromatic hydrocarbons in mussel tissue, sediment, urban dust, and diesel particulate matrices. %A Julie A Layshock %A Glenn R Wilson %A Kim A Anderson %K Animals %K Dust %K Environmental Monitoring %K Environmental Pollutants %K Geologic Sediments %K Ketones %K Mytilus edulis %K Polycyclic Hydrocarbons, Aromatic %K Quinones %K Vehicle Emissions %X

Polycyclic aromatic hydrocarbons (PAHs) substituted with a ketone or quinone functionality (OPAHs) may be important environmental contaminants. The OPAHs from environmental samples have demonstrated toxicity and may be more harmful than PAHs. Knowledge gaps concerning the occurrence of OPAHs in the total environment arise from analytical difficulties, as well as limited standards and methodologies. An optimized method was developed to quantify five ketone and four quinone OPAHs from matrices ranging from biological tissue to diesel particulates. Five National Institute of Standards and Technology Standard Reference Materials (SRMs) were analyzed. This is the first report of OPAH quantitation in SRM 2977 (mussel tissue), SRM 1944 (New York/New Jersey, USA waterway sediment), SRM 1975 (diesel extract), and SRM 1650b (diesel particulate matter) and among the few to report concentrations from SRM 1649 (urban dust). Furthermore, this is one of the first reports of OPAHs in biological tissue. Σ₉OPAHs were 374 ± 59 mg/kg (mussel tissue), 5.4 ± 0.5 mg/kg (sediment), 16.9 ± 1.6 mg/kg (urban dust), 33.4 ± 0.4 mg/kg (diesel extract), and 150 ± 43 mg/kg (diesel particulate matter). In all SRMs, the levels of OPAHs were similar to or exceeded levels of PAHs. Of the OPAHs tested, the most frequently occurring in the environmental matrices were 9-fluorenone, 9,10-anthraquinone, benzofluorenone, and 7,12-benz[a]anthracenequinone.

%B Environ Toxicol Chem %V 29 %P 2450-60 %8 11/2010 %G eng %N 11 %1 http://www.ncbi.nlm.nih.gov/pubmed/20830751?dopt=Abstract %R 10.1002/etc.301 %0 Journal Article %J Sci Total Environ %D 2006 %T Selenium accumulation patterns in lotic and lentic aquatic systems. %A Hillwalker, Wendy E %A Paul C Jepson %A Kim A Anderson %K Animals %K Carbon %K Ecosystem %K Environmental Monitoring %K Fishes %K Food Chain %K Geologic Sediments %K Invertebrates %K Rivers %K Selenium %K Time Factors %K Water Movements %K Water Pollutants, Chemical %X

Selenium (Se) concentrations in water column, sediment and insect compartments were measured over 3 years, in conjunction with selected physicochemical parameters, from lotic (flowing water) and lentic (standing water) sites within a single watershed in Utah, USA. There was evidence for steady-state concentrations of total [Se] in the insects, sediment and detritus, while there was no correlation between these concentrations and the concentration in surface water. Insect Se burden may therefore provide a more accurate measurement of food web accumulation risk than surface water Se concentration. The importance of organism-specific factors on Se transfer to higher trophic levels was revealed by the steady-state Se body burden within the same insect taxa occupying similar environmental compartments in both aquatic systems. Additionally, however, insect Se body burdens, even within similar taxa, were up to 7 times greater within the lentic compared with the lotic system, and site-specific biogeochemical processes are also likely to play a role in the pattern and level of Se accumulation between hydrogeochemically different aquatic systems occurring within the same watershed. Though a site-specific relationship was apparent between organic content and sediment and detritus Se concentrations, this factor did not account for insect Se accumulation differences between the lotic and lentic aquatic habitats. If carbon content is to be used as a site-specific predictor of Se accumulation potential, further investigations of it's influence on the food web accumulation rate of Se are required.

%B Sci Total Environ %V 366 %P 367-79 %8 07/2006 %G eng %N 1 %1 http://www.ncbi.nlm.nih.gov/pubmed/16487574?dopt=Abstract %R 10.1016/j.scitotenv.2005.12.024